Geoscience Machine Learning bits and bobs – data inspection

If you have not read Geoscience Machine Learning bits and bobs – introduction, please do so first as I go through the objective and outline of this series, as well as a review of the dataset I will be using, which is from the  2016 SEG Machine LEarning contest.

OK, let’s begin!

With each post, I will add a new notebook to the GitHub repo here. The notebook that goes with this post is  called 01 – Data inspection.

Data inspection

The first step after loading the dataset is to create a Pandas DataFrame. With the describe method I get a lot of information for free:

Indeed, from the the first row in the summary I learn that about 20% of samples in the photoelectric effect column PE are missing.

I can use pandas.isnull to tell me, for each well, if a column has any null values, and sum to get the number of null values missing, again for each column.

for well in training_data['Well Name'].unique():
    print(well)
    w = training_data.loc[training_data['Well Name'] == well] 
    print (w.isnull().values.any())
    print (w.isnull().sum(), '\n')

Simple and quick, the output tells met, for example, that the well ALEXANDER D is missing 466 PE samples, and Recruit F9 is missing 12.

However,  the printout is neither easy, nor pleasant to read, as it is a long list like this:

SHRIMPLIN
False
Facies       0
Formation    0
Well Name    0
Depth        0
GR           0
ILD_log10    0
DeltaPHI     0
PHIND        0
PE           0
NM_M         0
RELPOS       0
dtype: int64 

ALEXANDER D
True
Facies         0
Formation      0
Well Name      0
Depth          0
GR             0
ILD_log10      0
DeltaPHI       0
PHIND          0
PE           466
NM_M           0
RELPOS         0
dtype: int64 

Recruit F9
True
Facies        0
Formation     0
Well Name     0
Depth         0
GR            0
ILD_log10     0
DeltaPHI      0
PHIND         0
PE           12
NM_M          0
RELPOS        0
dtype: int64
...
...

A much better alternative comes with the matrix function form the missingno library. With the code below I can turn each well into a Pandas DataFrame on the fly, then a missingno matrix plot.

 

From those I can see that, apart from the issues with the PE log, GR has some high values in SHRIMPLIN, and so on…

All of the above is critical to determine the data imputation strategy, which is the topic of one of the next posts; but first in the next post I will use a number of visualizations of  the data, to examine its distribution by well and by facies, and to explore relationships among variables.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s